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ABSTRACT

This paper considers the application of system
identification techniques using spectral representation
for fitting models to textures and images and consists
of two parts. In part I, we develop consistent deci-
sion rules for choosing the neighborhood in a one—
dimensional autoregressive (AR) model. In part II,
the theory is extended to the case of stationary two-
dimensional random fields.
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Part l 
I

Optimal Choice of Neighbors 
I

for One-Dimensional Autoregressive Models

1. Introduction

We are interested in fitting an adequate model to a one—

dimensional observation sequence = {y(l),...,y(N)} obtained

from a stationary stochastic process. For instance, could

arise from sampling image gray levels at equal intervals along

a line. will be regarded as the output of a one—dimensional 
V

autoregressive (AR) process. Many decision rules are available

in the literature [1,2,3] for fitting a unidirectional auto-

regressive (UAR) model where the current observation depends

only on past ones. The problem of fitting a bilateral auto-

regressive (BAR) model (4], where the current observation de-

pends on the neighbors on either side, has not been given much

attention. Such models appear to be appropriate when the pro-

cess is obtained by sampling an image, since for images there

is no essential difference between the neighbors on one side

and those on the other. In this part we consider the problem

of finding the optimal neighborhood size in a one-dimensional

AR model for a given empirical series.

Two approaches to modeling are the maximum likelihood

approach and the Bayesian approach. We take a Bayesian approach

in this paper due to the following reasons: Ci) We obtain con-

sistent decision rules for choosing the best model, and (ii) an



explicit expression for the probability density of observations

• given a model is obtained, which will be useful for classifica-

tion of images and textures.

• A comprehensive theory is available for fitting UAR models

to the given data. In the maximum likelihood approach one

maximizes the likelihood function separately for each model.

The best model is then chosen by using the decision statistic

suggested by Akaike [1].

In the Bayesian approach [ 2 ]  of fitting models to the data,

various plausible models (UAR of order 2, order 3, etc.) are

postulated as mutually exclusive hypotheses C1, 1 ~ i. ~

where r is the total number of models under consideration.

The model which maximizes the posterior probability density

P(C1 )YN) is chosen as the best model with minimum probability

of error. The Bayesian approach involves obtaining an expres-

sion for p ( Y
N~~

8 ,C
k

) ,  1 ~ k s r, where 8 is the parameter

vector characterizing the model, and then integrating this over
1

an appropriate prior probability density function p ( e I C k ) .

A Gaussian assumption is usually made about the noise driving

the model in order to obtain a simple expression for

p (YN l8~
Ck). A comprehensive theory for comparison of models

more general than autoregressive has been developed in [2),

and the case of independent observations and linear models has

been considered in [5].

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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In this paper we suggest a Bayesian approach for BAR

model fitting. As time domain analysis is quite complicated

for bilateral models we resort to spectral domain analysis.

Hence instead of maximizing P(CiIYN), we maximize P(Ci!ZN)

to obtain the minimum probability of error decision rule.

Since the finite Fourier transform is a nonsingular transfor-

mation with unity Jacobian, the decision rules maximizing

P(CjIYN) and P(CIIZN) are equivalent. We first write an

expression for p (ZNI8,Cj) using the asymptotic Gaussian

properties of finite Fourier transforms and integrate it w.r.t.

8, by using an appropriate prior probability density function

p(
~ IC~

). Using the expression for p(ZNIC j)s a decision rule

that chooses a correct model with minimum probability of error

is designed. Any Bayesian methodology should answer criticisms

against the assumption of prior densities. In this paper,

we derive p (ZN IC I) for any arbitrary prior densities by using

a theorem from the asymptotic theory of integration [10].

We show that the decision statistic suggested here reduces

to the results reported in the literature for UAR models [2].

We also establish the consistency of the decision rule, i.e.,

the probability of choosing the jth model when the ith model

• - is true goes to zero uniformly as N -~ ~~~.

The organization of the paper is as follows: In Section 2,

we derive expressions for p (YN I8) for first order UAR and

BAR models to show the relative complexities of the expressions.

_ _ _ _ _ _-• ~~~~~~~~~~~~~~~~~~~ 
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The problem of fitting BAR models has not been given much

attention since Whittle’s work (4]. Whittle has shown how to

construct UAR models that have the same autocorrelation as

• given BAR models, so that known procedures for UAR model fit-

ting could be applied . But it has been pointed Out that it is

the multilateral scheme in general that corresponds to reality

even in those cases for which the formal work of estimation, H

etc., is more simply performed using an equivalent UAR model.

For bilateral models the expression for the likelihood

of oSservations is a complicated function of the coefficients,

since the Jacobian of the transformation from the noise variates

to observations is not unity. [In Section 2, we derive expres—

sions for p (YNJ 0) for one-dimensional UAR and BAR models to

illustrate the complexity of the expressions.] By considering

the likelihood of transforms of observations, one obtains a

simple form for the likelihood function. Specifically , using

the asymptotic Gaussian properties of the finite Fourier trans-

form, ZN = (z(X 1),z(X2),. .,z(XN)), an explicit expression can

be written for p(ZNJ 6 ), the dependence on the parameters

appearing through the spectral density function of the process,

evaluated at discrete frequencies Xl~
X2~~~~~

XN (6,7]. Using

numerical optimization algorithms [8], the maximum likelihood

is evaluated, and using Akaike ’s criterion the best model is

chosen. This procedure has been recently considered for a

vector random field [9].

_________________________________________________________________  
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• 
In Section 3 we design a decision rule that chooses a BAR model

with minimum probability of error. Section 4 establishes the

• consistency of the decision rule. The properties of the deci-

sion rule are discussed in Section 5, and the possible applica-

tions are indicated in Section 6.
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2. Expressions for for UAR and BAR models

In this section we derive the expressions for

(11], when 
~N 

is assumed to obey a UAR model or a BAR model,

in order to compare the relative complexities of these expres-

sions. For simplicity , we consider first-order models.

2.1 UAR model

Given 1N = (yCl),y(2),...,y(N)),
consider a first order UAR

model

y(t) = c~1y (t—l) + a ( t ),  1 5 t ~ N (2.1)

where c~
(t ) , t = l,2,...,N are identically and independently

distributed Gaussian noise, N(0,p). Consider the transforina-

tion of random variables from o,(l),o (2),...,c& CN) to y(l),y(2),

. • . ,y (N) :

1 y(l) o (l )

1 y(2) co(2)

0 
~l 

1 . 

=

0 0 —q~1 1

0 0 0 ... —c~1 
1 y(N) co(N)

C4 11 (y(l),...,y(N ) 1T = [~ (l),.. ,~~(N)l
T 

(2.2)

The transformation in (2.2) is not exact since we have not

considered the initial conditions. For large values of N,

the disturbance due to initial conditions is negligible. From

I
~
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= (l/2~p)~~
2exp[_ (N/2p) (2.7)

N 2 2
(p+(1/N) Z y (t—l) (q~1— q~

)
• t=1

• 
- 

is a quadratic form in 
~l 

and its further analytical

• manipulation is easy.

2.2 BAR model

Given 
~N 

(y(l),...,y(N)), consider the BAR model

y(t) = 41y(t—1) + $2y(t+l) + co(~i, I ~ t 5 N (2.8)

where {co ()} is as in Section 2.1.

Consider the transformation of random variables from

~ “
~2 

0 y(1) c~(l)

• 1 
~~2 

0 •

0 _4 1
] 

1 
~~2 

=

1 .

1 y(N) c~~N)
- 

(~2](y(l),y(2),...,y(N)]
T (~~(l),...’~~(N)] (2.9)

From the law of transformation of random variables,

p (y(l),...,y(N)I•1,*2,p)

= I J l p ( o ) ( l ) , a ) ( 2 ) , . . . , w ( N ) ) I
(c* (l )  , . . . ,c* (N) )T= 

~~~ 
(y(l) , . . . , y ( N )  ) T

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~
• ~~~ .• ~
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• the law of transformation of random variables, V

H p(y(l),...,y(N)~~ 1,p)

• 

•

• 
•~ 

= IJIp (c~(l) , . . . ,o (N) ) ( 2 . 3 )

V 

(~~(l),...,~~(N))
T = [4~ (y(l),...,y(N))

The Jacobian of the transformation is unity. By using the

H Gaussian assumption regarding o~(1),c,~(2),...,c~(N), we obtain

p(y(l),y(2),...,y(N) I c ~1,p)
(2.4)

N’2 1 N 2
= (l/2np) ‘ exp (— 

~~
— Z (y(t)—4 1y(t—l))
~~t=l

• Let

- 
N N 2

= Z y(t)y(t—l)/ Z y (t—l), and
t=l t=l

(2.5)
N

p = (1/N) Z (y(t)-41y(t—l))
2

t=l

The exponential term in (2.4) can be rewritten as

N
Z (y(t)—~1y(t—l)+~1y (t—l)—41y(t—l) )

2
t= 1

(2.6)
2

= N(p+ (l/N)(~ 1—q 1) Z y (t—l))
J t=l

• 
Substituting (2.6) in (2.4) we have

—I-V-i- 
~ 

,
~~~~~
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3. Decision rule for BAR model selection

We are given a sequence of observations 
~N 

=(y(l),...,y(N))

and r mutual exclusive compound hypotheses Ci~
C2l •~~•~

Cr~ 
To

describe C~ , consider the stochastic difference equation E~~
(4,p)

E~ : (A~~(~~1D) + B~ (l~,D~~ )]y(t)= w(t) (3.1)

• - m .
A1(~~,D) 

= l+41D + ~ 2D2+ • • • 4 ~m
D 1

B. (~~,D) = D~~+~ D 2+... ~ D (n
~~

m
~
) (3.2)1 - m

~+i m
~+2

where Dry(s) = y(r+s)
T

(3.i) is characterized by an (n~+l) dimensional vector 8
T = (~ ~c)

1 ~T = 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~ j = l,2,...,n. and T denotes

the transpose operator. In (3.1) u~(t), t=l ,2,...,N are inde-

pendent and identically distributed Gaussian random variables

with zero mean and variance p. When the coefficients in the

expression B
~~
(
~~
,D) are all identically zero the model reduces

to a unilateral autoregressive model.

We make the following assumption .

Al): The zeros of (A~ (~~,D) + B~~(4~~D ’) )  do not lie on the unit

circle, for all i, ~~~~~~

Let C = {E(~~,p); p>0 , ~ER~}

~ (E,m,n)

• C is a class standing for a set of models all having the same

equation E with the same m ,n but differing from each other in

the numerical values of the coefficients. As long as their

V equations are different, the two classes are different.

L 
_ _ _  _ _ _ _

V • • . •
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From the structure of the equation in (2.9) we see that

the Jacobian of the transformation is not unity , but rather a

complicated function of coefficients. Also note that we do

• not even obtain a closed form solution for the maximum likeli-

hood estimate (~
1
,~~
2
)T0f (~~ ,4~~)T as in the case of UAR

• models.



— —•-- •- -• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _

We are interested in finding a decision rule to assign

to one of the hypotheses C1, l~i~r. It is well known that

the decision rule that chooses the true model with minimum

probability of error is:

V Choose hypothesis k* if

• k* = arg max {P (C i I Y N)) (3 .3)

V 
Consider a nonsingular transformation with Jacobian unity ,

• r: YN+ZN. Then the decision rule in (3.4) is equivalent to (3.3):

Choose hypothesis k* if

V 
k* = arg max {P(CiIZN)} (3.4)

k

Here
• 

P(CjIZN) = p(ZN ICj)P(Cj)
p(ZN)

V where P(C~ )1 l~ i~r are the prior probabilities of hypotheses and

p(ZN IC i) = f p (Z
N IO ,Ci) p (O~C~ )dG

Specifically , consider the case where r is the finite Fourier

transform. This enables use to write an expression for

I p(ZN IO ,Ci) by using Theorem 1 [6] [7]:

• Theorem 1: Consider the finite Fourier transform of the observ-

ations defined by

• 

• 

z(X.) = N~~~.
2 E e

_
~~ ity(t) (3.5)

where j  = / 1, A~ =2iri/N , i=1,2 , .. . ,N . Let the observations obey

the hypothesis Ck . For large values of N , the finite Fourier

V 
— —  

V ~~~~~~~~ •
~~~~~~~~~~V



• transforms z(X 1), z(A2),...,z(AN) are independent and distri—

• 

• 
buted normally with zero means and variances

S ~~~~~~~~~~ S (e J A 2,~~,p) S (e~~~ $,p)
• ~

‘k - ~k -

where

- 
S (eJ X 1,~~,P) = p H (eJX i,~ ) H*(~~ i,q) (3.6)

H ~
‘k - k - k -

and

H (e~~i,4) = [A (4,eJX~) ~~~~k - k —  
1+ Bk(4,e ~~~~ l~i~.N

• This theorem allows us to write an expression for the

probability density of the transforms of the observations given

the parameters of the model and the hypothesis it obeys. The

likelihood of the transformed observations is given by

Z n  p(  z(X 1) ,  z ( A 2 ) , . . . , z ( A N ) l  4 , p , Ck )

jX .
=-~ -en 2i r  - Etn S (e ‘,~ ,p)

N 
(3.8)

+ E z ( A i ) z * ( X . ) / S  (e 1,4~,p) )
i=1 1 

~‘k - J

Substituting (3.6) in (3.8) we have

LHS of (3.8)

N jA.
= — ~Zn 2rr — Z t n C p I I H k (e 

~,4, ) 1 I 2 )

- ( l / 2 p ) E ( I I ; ( A 1) 1 1 2,1 IHk e
]X j ,~ 11 2 ) (3.9)



- -_____

N 1 N ~~~ 2
= — 

~-b~2irp 
— 

~ i=l I I H k (e ,~ ) II
j A .

— (l/2 p) E ( I I z ( X
~) I l 2/ I I Hk (e 1 ,) 11

2 (3.10)
i=l -

The structure of (3.10) is not in an appropriate form for

• further manipulation. We give below an equivalent expression

for (3.10) in Theorem 2. Prior to that we need the following

assumption:

ASSUMPTION (A2): The first and second derivatives of

N jA.
I £ n I  I H k (e 

~~~~ 
2

i=l -

N jA.
and ~ I I z ( A ~ ) I I 2/ I I H k (e 1 4 ,)~~~2 w . r . t .

i=l
nkexist for all 4, E R

Theorem 2: For large values of N,

Zn p ( z ( A 1) , z ( X 2 ) , . . .  ~
. (A N)I 4 , , p ,Ck )

= - (N/ 2 )Zn  
~~ f~k ”~k~ 

- 

~~~~~~~~~~~~ 
+

(~~~~k ) T
~ k (~

_
~ k ) + ~~~~~~~~~~~~~~~~ + O ( I I ~ 4k I I 3) (3.11)

• where
N jA .

~~~~~~~~ 
= Z n

~k + ~ E tn IlH k(e 
‘,
~k) II

2+l (3 . 12)

• 
V 

dk = ~
2f(4,p)/~

p2 
—

• 
V ~k and are maximum likelihood estimates of • and p.

~ 1 

L

il ~
_ • •~ :V~ - .J.

• • V ~~~~• • 
• V • 

• V



= 
1 a2f(4, p~) 

~~~~ 

(n k xnkmat~~~
x) (3.14)

— 
l
~
i
~
nk, l~ J~

nk
~~
=

• 
= ~

2 f ( ~~, p) / ~ p 34,~ (fl k Xl) vector (3.15)

H and
N jA . 2

f (4,,p) = £np+(l/N) E ZnI IHk(e 
1

, 4 , )~~

i=l 
—

N jA. 2
+ (1/Np) I ~z ( A ~~) (1 2/I IHk(e ‘~

)I I
i=l

To obtain p ( z  (X l ) , z ( X 2 ) ,.. .z(X~) ICk) we must integrate

(3.11) over (~~,p) by using appropriate prior probability den— V

sities p (~ ,p IC~). We do not make any specific assumption re-

garding the structure of p(
~~
,p IC k). The density must be regular

but otherwise can be arbitrary . We use a theorem from asymptoti.c

integration [91 to integrate over 4’ and p. An approximate ex-

pression for the posterior density P(CiIZN) is given in

Theorem 3: For large values of N,

&nP (CjIZN)~ 
_ (N/2)f(

~ k,~ k
) +

+ 
~
(nk+1)tn(2~

/N) + (N/ 2 )Zn2 lT - ~.Ln det F~~ (-g(0;N))

+ £nP(C1) 
— £nP(ZN) (3.16)

where

N jA.
f !k,~k

) = 1
~~~k + 

~
j . E t n I I H k (e ‘~~k~ 

11 2+1 (3.17)

1
VV~~~ ~ 

__________________

-
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For practical applications we suggest a simplified decision

rule:

Decide hypothesis is k* if

k* = arg min{h
~
(ZN)}k

• where

h
~~

(ZN) = NLn
~k 

+ E Ln I I~ 
Ce j

~~ k ) I (
2 + nkZn N (3 .20 )

The consistency of this decision rule can be proved similarly

to that of (3.17).

The form of the decision statistics is similar to that

reported in the literature [2] [5]. The first two terms repre-

sent the contribution from the likelihood of transforms of the

observations and the second term is due to the prior probability

density function. We show that the decision statistic reduces

to that reported in [2] for UAR models. For these models the

first simplification is that the Jacobian ‘ak’ of the transfor-

mation from noise variates to observations is unity. Hence (13],

for the kth model

jX 
* 

jA
Zn 

~k = 
N 

~ tn hI H k(e ,
~~

) H k (e , 4 , ) I I d X
2(2i11

jX. 2
~ £n II

Hk(e 
1

, 4 ’ ) ( (  = 0 (3.21)
• i=1 -

• Also the coefficients in the expression B~~(~~,D~~~) are identi-

• cally zero. The equations for and 
~k reduce to



_  V ~ VV V ~~~~~~~~~~ _

and

g(O;N) = 

~~~~~~~~ 
dk + (±_ ~k)

T
2k(~

_
~k)

(3.18)
+ 

~~~~~ 
(~

_
~k)

T
~k]

Comments: (1) we have obtained an approximate expression for

inP(CiIZN). Hence the decision rule that maximizes P(CIIZ N)

obtained here does not exactly minimize the probability of

error.

(2) The expression suggested in (3.16) involves a term due

to the prior probability density. The prior probabilities 4
should be chosen to reflect the degree of knowledge we possess

about the parameters. Following Jeffrey , we suggest a uniform V

distribution for each of the components of 4 and a uniform

distribution for £np [12].

We suggest a decision rule that approximates the minimum

• probability of error rule:

Decide hypothesis is k* if

k* = arg max {hk(ZN)}k

where hk(ZN) = 
_ (N/2)f(

~k,~ k
) - (nk/2)tn N

V 

+Zn p (±k,pk ICk) 
- ~Ln det F~ (-g(6~N)) (3.19)

We establish the consistency of the decision rule in the next

section.

-- 

- - 
•



• N II Z (A~) I I 2
= min{ E 

lHk(e
1,
~k~ 

~~ 2 

( 3 .2 2 )

and 
~k 

= ~ E I I z(X~) II / I I Hk(e 
‘
~~k

)I ( (3.23)

H The statistic f(c~~~P~) reduces to ~~~~~~~ 
= £n

~k
+1

P and the decision statistic is

h
~~
(ZN) = N(ZnPk) + nktn N (3.24)

V 

which is the statistic reported in [3] for UAR model fitting .

In the next section we prove the consistency of the deci-

sion rule.

1

• 

V 

V V V  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4



-

4. Consistency of the decision rule

Definit ion:  Let Pj(ZN IC j) denote the probability that we

choose the model C. when the true model is C.. Let the obser-

vations obey the model C, . The decision rule is said to be

consistent if P~~(Z~~ICj)+0 uniformly as N-~~ for all j~i.

For simplicity we assume that there are two hypotheses C1

and C2. Let the observations obey the hypothesis C1. Then C2

could belong to one of the following two cases:

• Case (i): (Over-specified hypothesis)

C2 is overspecified w . r . t  C1 if there exists a q?ER k such that

= A1(4’,D) and B2(4”,D) = B1(4,D)

for ~T= 
~4’l ’4 ’2 ’~~” ’4 ’n1~~’ 4’~ ~ 0, j =l ,2 , . .. ,n1

Example: Consider the hypotheses C11C2, and C3 defined by the

equations E1, E 2 ,  and E3 :

E1: (1 + 4’1D + 4’2D
1 + 4’3D

2)y(t) = w (t)

E2: (1 + 4’1D + 4’2D
2 + 4,3D

1 + 4’4D
2)y(t) =

E 3 : (1 + 4,1D
1 

+ 4’2D
2 

+ 4’3D 3) y ( t )  = w(t)

C2 
is overspecified w.r.t C1 but C3 is not overspecified w.r.t

H .1

Case (ii): All other models not covered by Case Ci)

We state and pi~ove a theorem which establishes the consis-

tency of the decision rule.

____________ — —— 
V V~~~~~~~ •~~~ ~~~~~~~~~~ V V -

• ~~~~~ 

V ~~~~~~~~~~~~~~~ 

~~~~~~~
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Theorem 4: The decision rule given in eq. (3.19) is consistent.

For the n~de1s covered by case (i) P2(ZN IC1) ‘O(K 1/(ZnN )
2), k1>O

and for the models covered by case (ii),

• P
2
(ZI~IC 1) O (I(2/N), k2 >0.

• This theorem is proved in Appendix III .

H

I

~~~~~~~: ~~~~~~~~~~~ VV V~~~ V • V V V • V~~~~~~ V



• • 5. Discussion

V The decision rule developed here completely solves the

problem of the choice of neighbors for one-dimensional AR models

• for a given empirical series. The decision rules developed in

(1], (2] (3] have covered only the UAR models. Only Whittle [4)

V has considered the problem of BAR models in connection with a

line transect, but no proof is given for the consistency of his

decision rule.

The hypotheses C1, 1’i~r defined here include both unilateral

and bilateral AR models. The decision rule is consistent,

transitive, and yields a quantitative explanation for the prin-

ciple of parsimony used in model building. The asymptotic ana-

lysis given here holds for large values of N, about 100-200.

The Bayesian approach has two advantages: (1) It yields consistent

decision rules for choosing the correct model; (2) the analysis

yields an explicit expression for the probability density of

transforms of observations given the model that the observations

obey. This expression could be used for classification purposes .

1 - 

V- -  • ,_ _V_V
V V . V •~~

V
•~ • V

~~•_ V~~~• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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6. Applications and extensions

Assume that we are given a sequence of sampled gray levels

along a row of an image. We can consider UAR models of orders

one and two and BAR models of orders one and two as a set of

• plausible models and use the theory developed here to choose the

• best model with minimum probability of error.

As the Bayesian approach yields an explicit expression for

the probability density of observations given a model, better

rules can be developed for classification purposes.

The theory can be easily extended to cover bilateral auto—

repressive and moving average (BARMA) models by appropriately

modifying the structure of the transfer function and the assoc—

iated stability conditions.

The extension of the theory described here to stationary

random fields is considered in Part II.

1

V - ~~~~~ •
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Part II

• Statistical Inference Theory
Applied to Texture Representation

1. Introduction

We are interested in developing statistical models for

• textures. In particular, we are interested in applying the

theory of statistical inference of stationary random fields to

images. We assume that the textures under consideration are V

sample functions of stationary random fields, not necessarily

isotropic. The organization of the paper is as follows: In

the rest of this section we review earlier research done in

image modeling and motivate the inference approach. In Section

2 we formulate the problem and develop a decision rule for

inferring the correct model with minimum probability of error.

We also assert the consistency of the decision rule. Section 3

compares the theory developed here with other known approaches

in the literature. Applications and possible extensions are

indicated in Section 4.
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1.1 Types of models

Early attempts at image modeling [14] , [15] applied one-

dimensional time series analysis to two-dimensional images .

By concatenation of successive rows, a one—dimensional time

series is generated. Seasonal autoregressive integrated moving

average models [14] and seasonal autoregressive models [151 have

been fitted to this time series.

It is intuitively clear that any model should reflect the

two—dimensional nature of the image. Tou et al. [16] considered

two-dimensional autoregressive and moving average models for

textures. By differencing along rows and/or columns nonstation—

arity in the series is removed . By inspection of autocorrelation

functions tentative models are determined and the parameters are

estimated by least square methods. In a subsequent paper (17]

classification rules are given based on differences between the

• gray levels of the original texture and regenerated texture.

Recently, Kashyap [18] has suggested a two—dimensional

unilateral autoregressive model for images. A vector of suffi-

cient statistics has been derived for the parameters of the

model which by definition possess all the information in the

• samples. Consistent rules have been developed to determine the

width of the one-sided neighborhood .

It is not clear if these unilateral models, though they are

two—dimensional, are appropriate for images, since for images

_ 
-_

~~~~~~~
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the neighborhood dependence extends in all directions. Though

Whittle [4] has considered equivalent unilateral schemes for

a given bilateralscheme, there are instances where there exists

no equivalent finice unilateral autoregressive model (UAR) for

a given bilateral autoregressive model [4 ] .

• Pratt [19] [20] and Gagalowicz [21] have suggested two—

dimensional spatial filter models which transform a sequence of

white noise variables into the observed structu:e. No attempts

have been made to use inference methods for identifying the

models.

Stochastic partial different ial  equations [22]  have also been

suggested as models for images. The discretized equivalents of

partial differential equations have been fitted using least

square techniques. These models cover nonseparable, nearly iso-
V tropic images. No attempts have been made to infer the models

f rom the data .

Two—dimensional linear estimation techniques have been con-

sidered for textures [23] . The gray level at the element (i,j)
V is assumed to depend on neighbors within a window surrounding the

(i ,j) element. However, the dimensions of the window are deter-

mined by using Akaike’s statistics, which apply to a singly

indexed sequence. A mean square criterion is used for determin-

ing the coefficients of the model.

By operating on an array of independent 

~~ V_ ~ VV VV~V V 
- 

-. ~
• .•~~



— • V • V • ~ V~~VV •VV~•V~_ V ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V__~V- V _ _~ VV Vr.V.,VVV~ .r~ ~ -V_~~~~~~~~ VV VVV V ~ VVV~ V - ~~~~~~~~ •V -

and identically distributed random variables, using a set of

independent parameters which control the directionality and

graininess of the random field generated , textures are synthe-

sized in [24] [25]. Results are given for binary first order

isotropic Markov random fields [24]. The number of parameters is

proportional to the square of the number of gray levels in the

texture and may be large for real textures.

There are many shortcomings in the models that have been

discussed above. Some of the models view an image as a conca-

tenation of rows, which is clearly inadequate. Some consider

two-dimensional but unilateral models. Even in these cases,

except for [18], no attempts have been made to infer the order

of dependency or dimension of neighborhood . Though two—dimen-

sional neighbhorhood models have been considered in [19] [20] [21],

no attempts have been made to theoretically justify the order of

the models. The work of Pratt and Gagalowicz is motivated

by experimental results reported earlier by Julesz. The models

P 
• 

are built with the idea of matching the correlations of the

parent texture and this may not always yield consistent models .

Vt t
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1.2 Inference of models

We believe that any realistic model should be inferred from

the data by using statistical inference theory. This is a

powerful approach since the underlying probability distribution

• of a texture can be inferred in a consistent way by using the

tools of system identification.

Not much work has been done in the area of image modeling

using statistical inference of random fields. This involves

assertions about the probability distribution of the observed

data. This is usually accomplished by considering parametric

forms of probability distributions with a finite number of para-

meters which is reasonably smaller than the number of observations .

Statistical inference is then concerned with choosing among the

various parametric descriptions of the underlying data. As we

are interested in building models for images, our basic models

will include bilateral models. We will also include some uni-

lateral models to check if the bilateral models are preferred to

unilateral models, for images.

• For the reasons given in Part I, we will do the analysis

in the spectral domain and take a Bayesian approach to f i tting

• models.

11.1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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2. Decision rule

The case of a random field is exactly analogous to the

• one-dimensional case that we have already cor.sidered. In this

section , we give the equation for the random field and state
- 

V 
the corresponding stability conditions. We state theorems

parallel to the ones in Section 3 and suggest the decision rule

that chooses the correct model with minimum probability of error .

We are given a set of observations y(s), sEQ5, 5 (51 5 )T

from 
~~~~~
, a grid of dimension N1x N2 and l’s~~N~ 1 i = 1,2, from

a stationary random field and r mutually exclusive compound

hypotheses C1, 1~ i’r . We define the ith parametric form of the

random field as follows:

E~ : I A(q) y(s+q) = u ( s)  (2.1)
- - •. -

where Q is a finite set of two-dimensional vector shifts and

u(s) is an independent and identically distributed Gaussian

random field with mean zero and variance p. (A(q), q~Q)T and p

• 

V are unknown.

• Let ~,T = (A (q)  ,qEQ ) and eT~ (4’
T p)

Define the shift operator,

D~y(s) = y(s+q), DT ( D D )

such that
• q1 q2

D1 D2 y(s) = y(s1+q1,s24-q2)

• 

- •~~~~~~~~ •~~~~~~ ~~~~~~~ 
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and

H~~
(D ,4 ’)  = I A~~(q )D~

q~ Q

V Then (2.1) can be represented as

H1(D,4)y(s) 
= u(s) (2.2)

Consider the Z transform of (2.2) where zT = (z 1, z 2 ) is a

complex vector

H .  (z , 4 ’ ) Y ( z )  = U(z) (2.3)

We make the following assumption (Al) about the stability of

the equation (2.1).

Al): H
~~
(z,4) ~ 0 for z11= 1 z2 1= 1 •

Let (x(A) , 
~~~~~~~~~~~~~~~~ 

~~= 

~~~~~~~~~
A .  = 2rrk~/N~ ~~~~~~~~ i=1,2,N~N1N2

denote the finite Fourier transforms of the observations

(y(s), s€%) from the random field. As discussed in Section 3,

Part 1, the decision rule that chooses the correct model with

• minimum probability of error is:

*Decide hypothesis is k if

k = arg max{P(C
~~
Ix (X), XE1

~x
} (2.4)

V k -

We have

P(C~~Ix (A), AEQ x) = p ( X ( X ) , A E ~ x ( C . ) P ( C . )

• 

• 

~ p ( X ( X ) , X~~ I C . ) P ( C . )  ( 2 . 5 )
j=l — — A j

and •

p(x (A), AE
~
2X IC~

) = f p (x (A),AEc2A Ie ,C~
)p(OIC

~
)dO (2.6)

V ~~~~~~~~~~~~~~~~~~~~~~~~~ V
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We now state Theorem 1’ which is a generalization of Theorem 1.

Theorem 1’:

Let the observations ( y ( s ) , s~ ~~
) obey the kth equation

Ek . Then as the rectangle 
~~ 

becomes large in all dimensions

of s, the f inite Fourier transform is approximately distributed

normally with mean zero and independently at different  frequencies

with variances

Syk
( e _

~~~2) = pH~~(e ) A ,4 , )  ~~ * ( j A 4,) for all ~

We need the following assumption ( A 2 ’ ) :

A 2 ’)  The f i rs t  and second derivative s of I t n I I H k (e
~~ • ) ( ( 2 and

A E
~ A 

-

I tI ~, (A )II 2/II H (e]A 4 ’ )t I2 w . r . t .  4, exist for all ,~ R k
A Ecl A 

- — - -

We state Theorem 2 ’ , as a generalization of Theorem 2.

Theorem 2’ :  As the rectangle 
~~ 

becomes large in all dimensions

of

Zn p ( x ( X ) , X
~

2 A , 8 IC k)

= 
_ (N / 2 ) f ( ~ k ) - ( N / 2 ) ( ( P -~ k ) 2

~ k + (~~~~k ) T
~ k (~~

_
~ k )

~~~~~~~ 
(~~~~k ) T

~ k + O ( (  2~~~k ’ ( 3) ( 2 . 7)

• where

= 1 + tn
~k
+(l/N) I tnI  I H k (e J

~ ‘~~k~ 
1 1 2 ( 2 . 8)

XE
~A 

-

V 

• 

= 1 1 . 1 I x A 1 1 2/IIH ~~j A  ) 1 I 2 ( 2 . 9 )
— A



= min{~ I L fl I IH (e3A~~~) 11
2

- 

~~

+ Zn(~ I Ix (A ) (( 2/I IHk(e
3
~ 

,~
) (( 2 ) (2 .10 )

AE
~ A 

— —
dk = ~

2f(~ ,p)/ap 2 (a scalar)

H ~~~~ 
(2.11)

= 

~~~ k 
~~k~~ k matrix) 

(2 .12)

•

~~l. 
= a2f(~ ,~ )I9~ a$~ (nkxl) vector (2.13)

~?lk

• and

f($,p) = Znp + (1/N ) I £n IIH k(e~~~,4’)I (
2

- AE flA 
-

+ ~~~~~
- I ( 1 ( ~~ j ( 2/1 ( (jX )((2 (2.14)
~ A E~2~ 

—

Integrating p ( x ( A ) ,  XESZ A I Q , Ck ) over the prior probability

density p (OIC k), l~k’r by using the aysmptotic theory of inte-

gration , we derive an expression for the posterior probability

density , P (C k ( x ( A ) , A~~~A ) given in Theorem 3’ .

I~~ V

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 
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Theorem 3’: As the rectangle 
~~ 

becomes large in all dimensions

• o fs ,

£nP (CkIx (X ) , ~~
H = -(N/2)f(

~k
) + £np(

~~ICk
) + 

~
(nk+l)Zn(2Ir/N)

+(N/ 2 )Zn2 i r  - ~ tn(det F
fl 

(-g ( 0 ; N ) ) ) 0_ ~-• k

.1.ZnP(C k ) — Zn p ( x ( X ) ,  XE ~2 x ) (2 .15)

g(e;N) = - P k)d k + (±_ ~ k ) T
~ k (~

_
~ k )

+ 
~~~~~~ 

(~ 1k ) T
~ k ]

The proof given in Appendix II can be easily extended to

prove this theorem, and the comments following Theorem 3 hold

here also.

Now we give the approximate decision rule that chooses the

correct model with minimum probability of error:

Decide hypothesis is k* j f

k* = arg max {hk(x(A ,, AEc2
~
)} (2.17)

k - -
where

AU
~A
) =

_ ( n
k/2 ) e

~~ 

+ £np (
~ k lC k ) - 

~en (det F~ (-g(8;N)) (2.18)

H 
k

For practical applications, we suggest a simplified decision rule :

Decide J~ypothesis is k* j f

k* = arg min {h~ (x ( A ) ,  X Ec2~~
} (2.19)

k -

~ 

~

• 

____________ 

V
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j
:1 I

H where

hk (x(A), A
~

c2A ) = N 
~~2k~ 

+ nkZnN (2.20)

The decision rules given in (2.17) and (2.19) are consistent.

A proof similar to that in Appendix III can be given to esta-

bu sh their consistency.

1
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3. Discussion and comparisons

The topic of statistical inference on random fields, which

is of primary interest in this paper, has been previously

considered by Whittle [4] and recently by Larimore [9]. Whittle

has developed spectral methods for stationary autoregressive

V scalar random fields. But this was before the development of

algorithms for fast Fourier transforms and no attempt has been

made to prove that the criterion of choosing the right model is

consistent.

Larimore has extended Whittle ’s method for the case of vector

random fields. But Akaike’s criterion has been used for choosing

the best model. As observed in [5], there exists no proof for

the optimality of Akaike ’s rule and recently it has been proved

that Akaike ’s rule is inconsistent [26].

We have suggested a consistent decision rule that chooses a

correct model with minimum probability of error. The theory can

be extended to include moving average terms in the stochastic

difference equation. This modifies the conditions for stability

and the numerical computations for estimating the coefficients

become more complex.

We believe that this approach will be of use in image model-

ing. So far, researchers in image modeling have either considered

unilateral n~odels or have not used system identification methods

to choose the correct model. The inference procedure developed

here chooses the correct model with minimum probability of error

_ _ _ _ _ _  - - 
V V - 
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• for unilateral as well as bilateral models.

This approach yields an explicit expression for the probab-

ility density of transforms of observations given the model the

observations obey. This has not been done before for bilateral

models. The expression for the probability density of transforms

of observations could be used for classification purposes. This

approach should result in good classification strategies for

textures.

It should be pointed out that the theory developed here is

based on the assumption that the random field is Gaussian . This

assumption has often been used in the literature on image

modeling [15] (17] [18].

H
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Appendix I

We prove Theorem 2.

Consider equation (3.10) repeated below :

£np(z (A1),z(X 2),... z(XN)(4~
p ,Ck)

= — ~Zn2rr p — 

~ i=1
1 IHk(e

J 1,~~

— I I I z ( A ~) I I 2/ I IHk (e 1 4,) 1 1
2 (1)

We first compute the maximum likelihood estimates of 4’ and p

under the hypothesis Ck.

Differentiating (1) w.r.t. p and equating to zero,

N jA.
= 

i=]. 
Iz (A

~
) I ~~~~ Hk (e 1,4~) 11 2 (2)

Substituting (2) in (1), the maximum likelihood estimate (m.1.e)

is given by
• 

— (3)
V 

• 

~k = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

and
V V 

0k = 

~~~~~~ 
= 

~ i=l
1 k (A~) ((

2
/I IHk (e

~ ‘~ k~ 
11 2

Rewrite (1) as follows:

£np (z(A l),z ( A
~
),...z(AN)l~~

p,Ck)

= - Zn2lT- ~ ;f(~~,p) (5)

Jt  
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4. Extensions

We propose to use the models developed here to develop

better classification rules for textures. The theory developed

here can be extended to the case of vector random fields . This

will be useful to build models for observation pairs such as:

a) (gray level , edge value)

b) (gray level, average gray level over a neighborhood)

We will treat these extensions in subsequent papers .

1
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where
• N j A .

f(4’,p) = £np+ I I £n ( I H k (e 
~~~~i=l -

N jA.
+(l/Np) E I (z (A

~) II 2/ (IHk(e 
1 4 , ) ( ( 2 (6)

i= 1

V 
Expanding f(~~,p) as a Taylor series in ~ and p at 

~
=
~k 

and

we have

= 

~~~~~~~~ 
+ ~~~~~~~j~~ V P P )  

~~~-. —

~lk

+ 
af(4’,p) ~~~~~~~ + 

~~~~~ ~~~~~~~ 
—

V 

- 

~~~~ ~p
2

+ 
1 

~~~~~~~ 4’ )
T a 2f (~ ,p) (4 ’— c~ ) +

i ~
—

— lUPjsnk ~~

~~~~~~~~~ 
a2f(~~p) + o (lI4’~~k II 3)

By def in i t ion of 
~k 

and

• 

!V~~~~(~~~~~~~~~1. 
‘k 

and 3 f (~~,p) 

~~k 

are zero,

• I

~~~~~~~~~~~~~ 
VV

V

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ --
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yielding

= 

~~~~~~~~ 
+ 

~ ~~~~~~

k

+ ~~~ 
~~~~~~~ 

— ~~~~~~ 
+

• 

. 
- - 34’j ~~~~ 

- -

—
— ].

~
1,j

~
f lk

(p~~ k ) ( ~~~~k ) T ~~~ 
+ O I I ~

-
~k II 3 (8)

using (8) and (3.13--3.l5) in (5), we have

• £np (z(A 1),z(A 2),... z(A N)(4’,p,Ck)

= - ~Zn2ir - 

~~~~~~k ,~~~~~~~~~ k ) d k +

V 

~~~~~~~~~~~~~ + (p_
~k)(~

_
~k)

T
~k + O (I(44k II 3) (9)

Q.E.D.

_______ • — _ _V~~ -— V - — ~~~~~ 
-— ~ _  V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~



V 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ V -,

Appendix II

We prove Theorem 3. We first state a lemma [10] to be used

in the proof of the theorem.

Lemma 1: Consider the integral

G(N) = 
‘R”~

9) exp[g(O ,N)JdO (10)

where
• R is an n—dimensional domain in the Euclidean n—space

6 is an n—dimensional vector

N is a large positive integer

g(O ,N) (a)is a bounded function for N large and assumes

an absolute maximum at an interior point
• 0(N) =

(b) F~ (~g(O~N))>c>O hold in R for N large

and

F~ (—g(O ,N)) = det II— g 0 0 (e ,N~ ( I l�i,j~ n
1 3

V Here g0 ~ 
(O,N) is the second order partial derivative of g ( O ,N)

i J
with respect to and 8~~.H Then

G (N) (
27r ) fl/2 [exp (g( ~~(N) ,N)] N

h(~~(N) )
V 

[F~~(-g ( 8 ,N ) ) ]  /
0=0(N)

Proof of Theorem 3:

• We have, to perform the integration

ffP (z (A 1),..., z(A ~ ) j 4 I ,p, c~ )p( 4 ’,pIC~ )d4’dp (12)

i

~~~~~~~~
V

~~~~~~~ 
~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



Substituting for p(z (A1),...,z ( A ~ )I4’,P,C~ ) from (9), we get

LHS of (12)

= (l/2~r)
N
~
’2exp (_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— _P
k)~~~~~k

)
~~~k

}p ,P k)d~
dP (13)

Identifying the terms in (13) with the terms defined in Lemma

1, we get

V
I N’2 N — — 2~~

(nk+l)/2 —

(l/2ir ) / p(—~ f(~ .,p~))(-~r)
— ~

. ‘r%. I~ J .  Z

N k ’ 1 2
[F~~( — g ( O I N ) )

0=0 (N)

where

g (O ,N) = k ) d k + ~~~~~~~~~~~~~~~~
+ (P_P

k
)($_

~k
)Sk

] (15)

1

V 

•
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Appendix III

We prove the consistency of the decision rule given in

Theorem 3.

We have

P2(ZNIC 1) = Prob[h1>h21 C1]

• I We evaluate Prob [h1>h 2 (c1] for the two cases mentioned in

• . Section 4.

Case Ci) :

Now ,
N JA.

h1-h2 = N (Zn ~~—Ln~~) + E Zn IIH 1(e 
1 

~~) II 2

N jA .
— E Zn (fH 2(e ‘~ 2~~ 

2 
+ (n1—n2)tnN + 

~l 
(18)

I
V where

= 2tn[p (~2,~ 2(C 2)/p(4’1,~ 1 (C1)]

+ Zn det F1(—g(0,N ) )  
—

V 
— 0 :O(N)

- Zn det F 2 ( -g ( 0 ,N ) )  e=~~(N )

1 + 2 en [P(C 2 )/ P ( C 1) ]  ( 19)

Using Lnx~~ x—l ,
I f N jA .

h1 h2 ~~
. N(p1—~2) + E Zn I 1H1(e 

1~~~~~ )

jA .
— I ZnI 1H 2 (e 1

,~~2) 11 2 + (n 1—n 2 ) ZnN 
~~~i=1

P h1-h2 
N(~1—~2) 1

n2 T~l 
( ) ~,ç~~ (n —n ) r
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rN jA . N jA . 1
I .~~~~ £nI 1H 1 (e ‘

~
•
~

•
l~ 

~2 — E Zn I H2(e “~2~ 
I 1 2

j — tnN +
1— (n2—nj)

V
i 

— 1 N I1 z ( X ~) H 2
Recall p, = ~~ I .

~~~~. 
., (19)

•‘• ~‘ ~ — 1 1.1 1 3 1 i
1’ ‘Ii

• From Theorem 1, z(X~ ) is a complex normal random variable
V 

• . . ~~~ 2with mean zero and variance Sy1Ce ,$,p) and hence (z~~~ ) I I
— JA j~is distributed as an exponential variate with mean S 1(e ,$,p).

Equivalently, I Iz (A~) 1 1
2 is distributed as 2.6 1(e ‘~~

,P)x (2),

where x2(2) is a chi—square distribution with two degrees of

freedom. Also from Theorem 1, z(A
~
) is independent of z(A~ ) for

i~j and hence (19) represents a sum or weighted independent

chi...squared var iables . The standard method (27 ] of obtaining

the distribution of sum of independent weighted chi-squareds

is to approximate it by a multiple, kX2(v) , of a chi-squared

variable whose mean and degrees of freedom are determined by

equating first and second order moments. For our purposes, it

• suffices to mention that p1 is a known multiple chi-squared

random variable.

- j Let = N (~ 1~~ 2)/~j + 1 
V

(n2—n1)

V 

[i~l~~~ 

H(e
j
~~~ ) 1 1 2 — Z Zn ( I H (e ’~~~) I 2]

+F~1/(n2-n~) be a random variable with finite mean and

variance c~ .

V V V  
~~~~VVV V



_ _  

- - V V • V V V V~~~~VV~~~~~~~~ V~~ V-

Then

V 

P2(ZN IC 1) = Prob(h 1>h2 I C 1]

£ Prob (~ 1>tnN] ~ O(K1/(.tnN)
2) (20)

by the ~~~bychev inequality.

Case (ii) :
V 

(21)

Since p1 is a maximum likelihood estimate of p,  we have

= p+ O(__ !~ ) (22)
1

Similarly,

= p+ O (_i) (23)
2

I I hence
I 

~ 
-ky. = k(—~), k>02

From (18)
N jA .

(h 1—h 2 )~~1 ~ N ( p 1—p 2 ) + ~j ( E Z n I 1H 1(e 
1 3. ) ~(

• N j A .
V 

— E Zn I fH 2(e “~~2~ 
11 2 ] + ~j (n1—n 2 ) tnN + 

~1~l 
(24)

(h1—h2Y~1 
£— /~ k + [Etn ( (H 1 Ce 

1,3) 11 2

• — E ~ n ( H2 (e 4’~ 1 ,
2] + (n 1—n 2 )~ j ZnN + 

~l~1 
(25)

N jA. N jA. 2Let = (zen l 1H1(e 
1~~~~~ ) 1 1 2 — E.tn( 1H 2 (e ‘2 ~ 

H ]

+ ~~~(n 1—n 2 )2 nN + 
~1~
’l

• be a random variable with variance .

‘H



H Hence

Prob [h1>h2fC 1]

H ~ Prob[+41k £ n2] = Prob[n 2 � /i~k]

£ O(c,~/Nk) = O(k 2/N) , k 2 >0 (27 )

by using the Chebychev inequality.
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